Anatomical relationship between opioid peptides and receptors in rhesus monkey brain.

نویسندگان

  • M E Lewis
  • H Khachaturian
  • H Akil
  • S J Watson
چکیده

To determine whether opioid peptide-receptor pharmacological association found in vitro (e.g., enkephalin-delta, dynorphin-kappa) predict anatomical relationships in situ, immunocytochemical and receptor autoradiographic studies were carried out on adjacent sections from the same brains of formaldehyde-perfused rhesus monkeys. Apparent mu and kappa opioid receptors (labeled, respectively, by [3H] naloxone and [3H]bremazocine under different incubation conditions), but not delta opioid receptors (labeled by [3H]D-Ala2, D-Leu5-enkephalin), survived the fixation procedure, and were found to be colocalized throughout the brain. We have observed complex associations between these binding sites and one, two, or all three opioid peptide systems (i.e., proopiomelanocortin, proenkephalin, and prodynorphin) in different brain regions. These multiple opioid peptide-receptor subtype associations are apparent, for example, in neural systems involved in the processing of pain stimuli, and may be important for mediating different types of analgesia. Since differential processing of proenkephalin and prodynorphin can give rise to opioids of varying receptor selectivities, the colocalization of opioid receptor subtypes may signify that such processing is a key regulatory event in determining which receptor subtype is activated and, thus, the physiological consequences of opioid neurotransmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative distribution of opiate receptors and three opioid peptide neuronal systems in rhesus monkey central nervous system.

Using combined autoradiography-immunocytochemistry, the anatomical distribution of [3H]naloxone-labelled opiate receptors was compared to the loci of neuronal systems immunoreactive for beta-endorphin, [Leu]enkephalin and dynorphin A in rhesus monkey brain. High densities of binding were observed in relation to each of the systems, consistent with findings that each opioid precursor can synthes...

متن کامل

kappa-Opioid receptor binding populations in rhesus monkey brain: relationship to an assay of thermal antinociception.

The binding characteristics of the kappa opioid ligands [3H]U69,593 and [3H]bremazocine, the mu opioid ligand [3H][D-ala2,N-Me-Phe4,glycol5]enkephalin and the delta opioid ligand [3H]p-Cl-[D-pen2,5]enkephalin were studied in rhesus monkey brain membranes in saturation binding experiments and were followed by competition binding experiments with a variety of peptidic and nonpeptidic opioid ligan...

متن کامل

Myocardial Infarction in a Rhesus Monkey

Myocardial necrosis can be result from a number of causes including nutritional deficiencies, chemical and plant toxins, ischemia and metabolic disorder. The outcome of myocardial necrosis varies depending on the extent of the damage (Donald 2001, Jubb 1993, Radostits 1994, Vanvaleet 1986). Myocardial infarction without demonstrable of atherosclerosis were reported in a rhesus macaque (Gonder 1...

متن کامل

Molecular docking study of Papaver alkaloids to some alkaloid receptors

Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...

متن کامل

[3H]dynorphin A binding and kappa selectivity of prodynorphin peptides in rat, guinea-pig and monkey brain.

We have previously demonstrated that [3H]dynorphin A selectively labels kappa opioid receptors in guinea-pig whole brain. In these current studies, using protection from inactivation by beta-chloronaltrexamine (beta-CNA), we are able to demonstrate that although dynorphin A prefers kappa receptors, it will label mu receptors when kappa receptors are not available, or present in only a small num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research bulletin

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 1984